# HuksefluxUSA

# HFP01SC Self-calibrating heat flux sensor™

HFP01SC self-calibrating heat flux sensor<sup>TM</sup> is a heat flux sensor for use in the soil. It offers the best available accuracy and quality assurance of the measurement. The on-line self-test verifies the stable performance and good thermal contact of sensors that are buried and cannot be visually inspected and taken to the laboratory for recalibration. The self-test also includes self-calibration which compensates for measurement errors caused by the thermal conductivity of the surrounding soil (which varies with soil moisture content), for sensor non-stability and for temperature dependence.



**Figure 1** *HFP01SC self-calibrating heat flux sensor. The opposite side has a blue coloured cover.* 



**Figure 2** *HFP01SC* is used in soil heat flux measurements in high-accuracy surface energy flux experiments

# Introduction

HFP01SC measures soil heat flux in W/m<sup>2</sup>. It is used when the highest level of quality assurance and a high measurement accuracy are required. In essence, HFP01SC is a combination of a heat flux sensor and a film heater. The heat flux sensor output is a voltage signal that is proportional heat flux through the sensor. At a regular interval the film heater is activated to perform a self-test (see figure 4). The self-test results in a verification of sensor contact to the soil and in a new sensitivity that is valid for the circumstances at that moment. The latter is called self-calibration. Implicitly also cable connection, data acquisition and data processing are tested. The result is a much improved accuracy & quality assurance of the measurement relative to measurements with conventional sensors such as model HFP01. Soil heat flux sensors are preferably left in the soil for as long as possible, so that the soil properties become representative of the local conditions. Using self-testing, the user no longer needs to take sensors to the laboratory to verify their stable performance. A typical measurement location is equipped with 2 or more sensors for good spatial averaging.

### Unique features and benefits

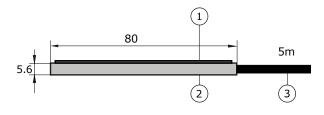
- low thermal resistance
- large guard area (required by the ISO 9869 standard)
- low electrical resistance (low pickup of electrical noise)
- high sensitivity (good signal to noise ratio in low-flux environments)
- robustness, including a strong cable (essential for permanently installed sensors)
- IP protection class: IP67 (essential for outdoor application)
- incorporated film heater for self-testing

Copyright by Hukseflux. Version 1607. We reserve the right to change specifications without prior notice **Page 1/2. For Hukseflux Sensors go to www.huksefluxusa.com or e-mail us: info@huksefluxusa.com** 



#### Suggested use

 high-accuracy scientific measurement of soil heat flux, with a high level of data quality assurance


#### Measurement and control

Requirements for data acquisition and control:

- for heat flux: one millivolt measurement
- for heater current: one current measurement (or voltage over a current sensing resistor)
- for switching the heater current on and off: one relay with 12 VDC nominal output

#### Calibration

HFP01SC calibration is traceable to international standards. The factory calibration method follows the recommended practice of ASTM C1130.



**Figure 3** *HFP01SC* self-calibrating heat flux plate: (1) film heater, (2) heat flux sensor plus passive guard, (3) 2 x cable, standard length is 5 m (optionally longer cable). Total sensor thickness including heater and covers is  $5.6 \times 10^{-3}$  m ( $6 \times 10^{-3}$  m at cable exit from sensor). Dimensions in  $x \, 10^{-3}$  m.

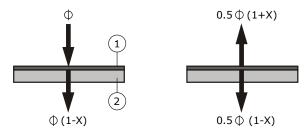



Figure 4 Explanation of the self-calibration: on the left, the heat flux sensor (2) measures a soil heat flux  $\Phi$ . This flux is subject to a measurement error - X, the deflection error which depends on the thermal conductivity of the soil compared to that of the sensor and its thermal contact to the soil. On the right, during the self-test the film heater (1) is switched on to generate a known electrically generated heat flux. As a first approximation, the division of the total heat flux between downward flux through the sensor and upward flux contains the same (1-X) term that also characterises the deflection error. The signal level during the self-test, multiplied by 2, is used for selfcalibration. The newly measured sensitivity compensates for the deflection error, and also for temperature dependence of the sensitivity and nonstability of the sensor.

# **HFP01SC** specifications

| Measurand                      | heat flux                                   |
|--------------------------------|---------------------------------------------|
| On-line functionality testing  | self-test including                         |
|                                | self-calibration                            |
| Sensing area                   | 8 x 10 <sup>-4</sup> m <sup>2</sup>         |
| Sensor thermal resistance      | 81 x 10 <sup>-4</sup> K/(W/m <sup>2</sup> ) |
| Measurement range              | -2000 to 2000 W/m <sup>2</sup>              |
| Sensitivity (nominal)          | 60 x 10 <sup>-6</sup> V/(W/m <sup>2</sup> ) |
| Rated operating temperature    |                                             |
| range                          | -30 to +70 °C                               |
| IP protection class            | IP67                                        |
| Film heater resistance         | 100 $\Omega$ $\pm$ 10 %                     |
| Film heater rated power supply | 9 to 15 VDC                                 |
| Interval between self-tests    | 6 hr                                        |
| Heating interval duration      | 180 s                                       |
| Power consumption              |                                             |
| daily average                  | 0.02 W                                      |
| Standard cable length          | 2 x 5 m                                     |
| Options                        | longer cable length                         |
|                                | (10, 15, 20, 30, 40 m)                      |

#### Options

 longer cable (2 x), in multiples of 5 m, cable lengths above 20 m in multiples of 10 m

#### See also

- in case a less accurate measurement is sufficient, consider model HFP01
- view our complete range of heat flux sensors

#### About Hukseflux

Hukseflux Thermal Sensors offers measurement solutions for the most challenging applications. We design and supply sensors as well as test & measuring systems, and offer related services such as engineering and consultancy. With our laboratory facilities, we provide testing services including material characterisation and calibration. Our main area of expertise is measurement of heat transfer and thermal quantities such as solar radiation, heat flux and thermal conductivity. Hukseflux is ISO 9001:2008 certified. Hukseflux sensors, systems and services are offered worldwide via our office in Delft, the Netherlands and local distributors.

> Interested in this product? E-mail us at: <u>info@huksefluxusa.com</u>

Copyright by Hukseflux. Version 1607. We reserve the right to change specifications without prior notice **Page 2/2. For Hukseflux Sensors go to www.huksefluxusa.com or e-mail us: info@huksefluxusa.com**